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H I G H L I G H T S

• Thermal conductivity of graphene paper is highly temperature dependent.

• The temperature-dependent property is attributed to the morphology and inner-structural change.

• Graphene paper exhibits much better cooling performance than conventional cooling films.
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A B S T R A C T

Graphene paper (GP) is more feasible to be integrated as a heat spreader than monolayer graphene due to its
controllable size and moderate reduction in thermal transport properties. In this work, we fabricated and
characterized GP to understand its thermal transport properties based on thermal bridge method combined with
transient electro-thermal technique. The thermal conductivity of GP exhibits a highly temperature dependent
property from 637W/mK at room temperature to 757W/mK at 80 °C, which is contrary to the trend of
monolayer graphene. The increasing thermal property can be partially ascribed to the morphological and inner-
structural change of the composite at elevated temperatures. Surface roughness is found to be reduced by 30%
from atomic force microscope imaging. This feature is beneficial for many industrial applications such as the
cooling film in smartphones. The implementation of GP is further verified in a smartphone to simulate the heat-
dissipation performance. The results show that GP with temperature dependent properties exhibits much better
cooling performance than conventional cooling films such as copper film.

1. Introduction

High intrinsic thermal conductivity of monolayer graphene and its
great potential in thermal management have attracted much attention
[1]. The extremely small thickness and size impede the real applications
unless the bulk material with high thermal conductivity becomes pos-
sible [2–4]. A proper integration of graphene laminate in plastic ma-
terials [5] as thermal interface materials can significantly improve the
heat-dissipation performance [6–9]. However, for free-standing gra-
phene, the increase in layer number [10], residue impurities, defects
and disorder [11] would contribute to large reduction in thermal
properties [12]. The integration of graphene into bulk structures while
retaining the excellent thermal/mechanical properties is a challenge.

Advance in material science has make it possible to fabricate large-scale
GP with only moderate damage to its two-dimensional structure
[13,14]. Compared with the commercial thermal conductor such as
copper thin film with thermal conductivity of ∼400W/mK [15], GP
might be promising in thermal management applications [16].

Many efforts have been devoted to obtaining high thermal con-
ductivity of GP. For example, Kong et al. prepared a flexible graphene-
carbon fiber composite film by depositing the graphene oxide (GO) into
carbon fiber precursor followed by carbonization [17]. The graphene
was partly separated by a 3D carbon fiber framework to reduce the
phonon leakage at interface. Thermal conductivity of their sample was
reported to be 977W/mK. Shen et al. obtained the graphitizing GO film
by directly evaporating the GO suspension under mild heating [18].
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They claimed that the interface thermal resistance and phonon-
boundary scattering were suppressed and a high thermal conductivity
was obtained: 1100W/mK. In order to control the alignment and
thickness of graphene inside the GP, Xin et al. employed the direct
electro-spay deposition method to increase the thermal conductivity
[19]. Their results revealed that thermal conductivity of GP is sensitive
to the treatment temperature and average size of graphene flakes.

It has been reported that the treatment temperature in synthesis
process could change the structure and then thermal properties, while
the operating temperature also affects the heat transfer performance,
especially for most carbon materials [20,21]. The temperature depen-
dent thermal conductivity of carbon-based structures including carbon
nanotube (CNT), graphene and diamond can be described by Umklapp
phonon scattering theory [22,23]. This value increases firstly toward
transition temperature (usually less than 300 K) and then decreases in a
1/T relation for a large temperature range [24,25]. However, for
carbon-based composites, temperature dependent properties are more
complicated when both phonon-boundary and phonon-defect scatter-
ings are all involved [26,27]. For example, thermal conductivity of CNT
fiber is enhanced by two folds (from 40 to 105W/mK) within a tem-
perature increasing from 93 °C to 253 °C [28]. As a highly porous
structure, thermal conductivity of graphene foam is much lower and is
also sensitive to temperature (from 0.3W/mK at 27 °C to 1.5W/mK at
177 °C) [29]. Considering that the GP in this work consists of graphene
flakes under the van der Waals interaction, the phonon-boundary
scattering at the interface could change the thermal properties as
temperature increases.

Thermal characterization works of different GPs have been reported
based on different techniques (listed in Table 1). The large variation in
the reported values stems from (1) differences in the quality of GP since
they are prepared with different methods, and (2) differences in char-
acterization methods that might introduce uncertainties if not carefully
controlled in the measurement. The large diversity of reported values is
not surprising [30,31]. In this work, we fabricate a GP by graphitizing
the GO film, and characterize its thermophysical properties based on a
thermal bridge method, and then combine with the transient electro-
thermal technique to investigate the comprehensive thermal properties
of GP. Most importantly, we study the temperature dependent ther-
mophysical properties and validate the great potential for applications
in thermal management.

2. Measurement principle and experimental details

2.1. Synthesis and structural characterization of GP

Our GP is synthesized from the GO film which is prepared by the
modified Hummer’s method. It is dispersed into the solution with a
concentration of 10mg/mL. The GO slurry is uniformly attached to a
polyethylene terephthalate (PET) film among an open-air environment

to evaporate the water inside the sample. In order to remove the
oxygen-containing functional groups and the possible organic im-
purities, the individual GO film separated from PET is immersed in a
carbonization environment of 1100–1300 °C for 30min. Furthermore,
the film is highly graphitized at around 2800 °C for 1 h and then slowly
cooled down to room temperature with argon gas protection during the
whole process. Wrinkled structure of graphene flakes appears inside the
porous graphene film and then expands along the cross-plane direction.
Two smooth stainless flakes are used to press the film under a high
pressure of 100MPa for 1 h. Finally, a GP with a dense structure is
obtained.

Fig. 1(a) presents a scanning electron microscope (SEM) image of
GP sample in cross-section direction. It is found that the graphene flakes
closely stack with each other along the cross-section direction. The
layer-by-layer nanostructure determines a dense assembly. Two parallel
lines were introduced in the inset as a comparison to demonstrate the
uniform thickness of GP (37.3 μm). The small wrinkles at GP surface are
shown in Fig. 1(b). The GP exhibits excellent flexibility, as shown in the
inset of Fig. 1(b). It can be bent, rolled or even folded without any
cracking. The emission and reflection spectra of GP characterized by
Fourier transform infrared spectroscopy (FTIR) are shown in Fig. 1(c).
According to the radiation relation of

∫= − −
∞ε ρ λ τ λ E λ E[1 ( ) ( )] d /λ0 b b [32], where ρ(λ) is the spectral re-

flectivity, τ(λ) is the spectral transmissivity, Ebλ is the spectral emissive
power, Eb is the blackbody emission, the overall emissivity of GP is
obtained as 0.3345, which is much smaller than that of natural graphite
[33]. Wang et al. indicated that the emissivity is sensitive to the surface
microstructure of graphite [34]. The wrinkled nanostructures upon the
surface of GP affect the emissivity significantly, which could be the
main reason for the discrepancy between GP and graphite material.

As the Raman spectrum with a wavelength of 532 nm in laser ex-
citation shown in Fig. 1(d), the inconspicuous D peak (1350 cm−1)
indicates a low defect level and good crystalline structure inside GP
[35]. The intensity ratio of D peak to G peak (ID/IG) is sensitive to the
crystallite size of graphene under a certain wavelength of Raman laser
[36]. In Fig. 1(d), the ID/IG is determined as 0.0186, indicating a
crystallite size of 1.03 μm [37,38], which is 11 times larger than that of
raw graphite [39]. The inset shows an asymmetric structure of the 2D
signal. Lorentz function is applied to fit 2D peak into two peaks (G’3DA
peak and G’3DB peak). Since the 2D peak is sensitive to the structure of
graphene, the stacking order of graphene flakes inside GP is in AB
Bernal [40] and similar to that of highly oriented pyrolytic graphite
[41]. The layer number of graphene flakes can be identified from the
intensity ratio of 2D peak to G peak. Raman spectra are collected from
four positions for averaging. The ratio is determined to be 0.19–0.20,
demonstrating that there are five or more layers of graphene in GP
sample [42]. Previous study shows that thermal conductivity of gra-
phene with a layer number larger than 5 at room temperature is com-
parable to that of graphite [43].

2.2. Thermal conductivity measurement

The schematic of the thermal-bridge method for thermal con-
ductivity (k) measurement is shown in Fig. 2. The sample is suspended
between a heater and a heat sink inside a vacuum chamber. The heating
current is supplied and carefully controlled by a DC current source.
Heat is transferred from the heater to the heat sink through GP.
Thermal equilibrium can be established between the Joule heating and
the thermal transport through heat conduction and thermal radiation.
According to Fourier’s law, k can be described as

=
−

k
qL

Wd T T( )1 2 (1)

where L, W, d, T1, T2, q are the sample length, width, thickness, heater
temperature, heat sink temperature, heat conduction, respectively.
Among these parameters, the q can be described as q= IU-

Table 1
Reported values of thermal conductivity of GP.

Materials Measurement Methods k(W/mK)

Peng et al [16] GP Laser flash 1940
Kong et al. [17] Graphene-carbon

fiber paper
Laser flash 977

Shen et al. [18] GP Laser flash 1100
Xin et al. [19] GP Laser flash ∼1434
Hou et al. [48] GP Modified laser heating

angstrom
220–390

Kumar et al.
[30]

Reduced GO paper Laser flash 1390

Xie et al. [61] GP Transient electro-
thermal

634–710 at RT

Ding et al. [74] GP Laser flash 1842
Our work GP Thermal bridge 637
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εS1σ(T14− T04)− εS2σ(Ta4− T04), where I, U, ε, S1, S2, σ, Ta are con-
stant current, voltage, emissivity of GP (obtained as 0.3345 from
measurement), surface area of heater, surface area of GP, Stephen-
Boltzmann constant, average temperature of GP, respectively.

Three samples are obtained from the same piece of GP with di-
mensions of 5.00×10.82mm2, 5.00×15.18mm2 and
5.00×18.64mm2, respectively. The thickness of GP is 37.3 μm as
mentioned above. The heater has the same width as GP to ensure a
perfect fit and silver paste is used to connect the sample and the heater
to reduce thermal contact resistance. The measuring stage is placed in a
vacuum chamber under 1mTorr to eliminate heat convection effect.
Various currents from 100mA to 400mA are applied to the heater.
Temperature is monitored by a thermocouple when a steady state along
the sample is established. Each measurement is repeated several times
for averaging to reduce measurement uncertainty.

3. Results and discussions

3.1. Temperature dependent thermal conductivity

Compared with laser-based techniques, the thermal bridge method
features simple setup and straight-forward measurement strategy. The
heating density can be precisely controlled, which involves less un-
certainties. The k results of three GP samples are shown in Fig. 3. Si-
milar trends of k with respect to temperature are found for all samples.
The k at room temperature is characterized as 637W/mK. Compared to
the results in opening literatures in Table 1, the variation is reasonable
considering the discrepancy in sample preparation and the measuring
methods. The k of GP is much lower than that of monolayer graphene
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Fig. 1. SEM image of GP (a) in cross-section direction with a thickness of 37.3 μm shown in inset and (b) in-plane direction. The insets show excellent flexibility of
samples. (c) The emission, reflection and transmission spectra of GP. (d) The Raman spectrum of GP.
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Fig. 2. The schematic of thermal-bridge method for thermal conductivity
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[44], which is also reasonable considering the thickness of samples. The
k is decreased dramatically with the increase of atomic layer due to the
enhancement of phase-space states in phonon dispersion [23]. Fur-
thermore, the presence of large numbers of contact interfaces for gra-
phene flakes inside GP introduces intense phonon scattering in thermal
transport.

It is found that the k of GP is increased from 637W/mK to 757W/
mK as the temperature is increased from room temperature to 81 °C,
which is aligned well with the operating temperatures for most elec-
tronics. According to Umklapp theory, the k of graphene at above room
temperature decreases with respect to temperature [45]. The transition
temperature is usually below 300 K [46]. For GP samples, even though
the high temperature treatment in graphitization process introduces a
defect repairing process [47], there still exist some deficiencies inside
GP due to the observation of D peak in Fig. 1d [48]. The phonon-
boundary scattering and phonon-defect scattering are all involved in
the thermal transport process. Temperature rise might introduce a
structural modification and thus affect the phonon scattering and the
overall thermal properties. The GP consisting of graphene flakes and
other composites evolves a certain thermal expansion during heating
process. k is more sensitive to interface mismatch between graphene
flakes and adjacent mater other than the Umklapp phonon scattering
[49].

3.2. Morphological change at elevated temperatures

To confirm this, we used the atomic force microscope (AFM) to
study the morphological change of GP at elevated temperatures. As
shown in Fig. 1(b), there exists many small wrinkled nanostructures at
the GP surface, which could lead to strong phonon scattering and could
be the main reason for reduced k [50–52]. The k can be reduced by
wrinkled nanostructures by introducing a compressive strain [53].
Fig. 4(a) presents the surface morphology of GP at different tempera-
tures: the height distribution curve along the red line is shown as an

inset. The arithmetical mean deviation of assessed profile (Ra) is in-
troduced to study the surface morphological change during the heating
process, and is calculated as [54]

=
∑ −

=R
y y

N
| ¯|

a
i
N

i1
(2)

where −y y| ¯|i is the absolute variation between the roughness profile
and the mean line. The GP sample is heated by a heating platform
beneath it. In Fig. 4(b), it is demonstrated that Ra is decreased from
2.86 nm to 2.01 nm with temperature from 25 °C to 80 °C for the same
position. As illustrated in Fig. 4(c), temperature rise introduces a tensile
strain to the wrinkled nanostructures, resulting in a decrease in surface
roughness [55]. Among the temperature range of 25–80 °C, the Umk-
lapp phonon scattering contributes to a decreasing k by 24% for
monolayer graphene and 10% for graphite, respectively [46]. Since five
or more layers of graphene in GP sample has been demonstrated in
Raman measurement, the decrease of k introduced by Umklapp phonon
scattering is within the range of 10–24%. However, a reduction of 30%
in surface roughness changes the overall phonon transport properties in
GP. The phonon-boundary scattering at wrinkled nanostructure is
suppressed significantly, especially for those surfaces that are smoother.
As a combined effect, the k of GP increases over the measured tem-
perature range [56]. Chen et al. measured the k of suspended graphene
with and without wrinkled nanostructure by micro-Raman mapping
[57]. The k of graphene without wrinkled nanostructure is about 27%
higher than that with wrinkled nanostructures. Wang et al. calculated
the anisotropic k of graphene with wrinkled nanostructures [58]. k
could be reduced by 80% for wrinkled nanostructures compared with
the initial graphene.

3.3. Characterization of thermal diffusivity and capacity

In order to systematically investigate the thermal transport prop-
erties, thermal diffusivity of our GP is characterized by the transient
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electro-thermal (TET) technique [59,60]. Three GP samples are pre-
pared from the same original piece with lengths of 14.86mm,
17.60mm and 23.38mm, respectively. As shown in Fig. 5(a), the
sample is suspended between two cooper electrodes with silver paste to
ensure a good electrical and thermal contact in the vacuum chamber. A
DC step current from 90mA to 210mA is applied to the sample to in-
troduce Joule heating. The normalized temperature rise can be de-
termined as

∑∗ =
− − −

−
=

∞

T
π

m π αt L
m

96 1 exp[ (2 1) / ]
(2 1)m

4
1

2 2 2

4 (3)

where α is thermal diffusivity, L is sample length, t is heating time. The
sample temperature is sensitive to electrical resistance. Therefore, the
normalized temperature rise can be obtained from the voltage evolu-
tion, and is described as [U(t)-U0]/(U1-U0), where U(t), U0 and U1 is the
voltage at time t, initial and final voltages over the sample, respectively.

Fig. 5(b) shows the linear relationship between resistance and
temperature over a temperature range of 25–85 °C. A fitting line is es-
tablished to determine a linear relationship with a normalized tem-
perature coefficient of ×−

+ −3. 35 100.12
0.12 4/K. The experimentally normal-

ized temperature rise during heating process is presented in Fig. 5(c).
The α of GP is fitted among 3.78× 10−4 m2/s–5.63× 10−4 m2/s under
different heating currents with 95% confidence interval. Xie and Wang
et al. determined a α of GP as 6.15× 10−4 m2/s at room temperature
from the increasing behavior of normalized voltage variation during
heating process [61]. The values are also consistent well with the
measured results from other group [17]. In addition, thermal reffusivity
(Θ, inverse α) can be used to study the phonon thermal resistivity in GP
[62]. It is found that Θ varies slightly from 2×103 s/m2 to 2.5×103 s/
m2 in the measured temperature range as shown in Fig. 5(d). Con-
sidering the single relaxation time approximation, Θ is determined to be
Θ=3/(υ2 τ) [63], where υ is the phonon velocity, and is insensitive to
temperature. τ is the relaxation time for phonon scattering. According

to the Matthiessen’s rule, τ is determined by the Umklapp, defect and
boundary phonon scattering. The phonon relaxation time of Umklapp
increases exponentially with temperature. Phonon relaxation time in-
duced by defect and boundary is determined by the internal structure of
GP. Since the morphology is changed during the heating process as
demonstrated by AFM imaging. The τ is sensitive not only to the
Umklapp phonon scattering, but also to the defect and boundary
phonon scattering induced by the change of internal structure during
temperature rise [64], and thus contributes to a combined mode in
Fig. 5(d).

The specific heat capacity (Cp) is estimated from the measurement
results of α and k: Cp= k/αρ, where ρ is the density of GP and is cal-
culated from the sample mass and geometry at room temperature [65].
Four samples in different dimension are tested and the density is de-
termined as −

+952. 16 88.33
88.33 kg/m3. The uncertainty is from standard de-

viation among measurement results. Considering that k and α values at
room temperature, the Cp of our sample is estimated as −

+1184 J/(kg·K)100
121 .

Literatures have shown that the ρ and Cp for bulk graphite materials at
room temperature is measured to be 2250 kg/m3 [66] and 709 J/(kg·K)
[25], respectively. Although our GP undergoes a high compression
process to integrate the porous structure into a dense film, the assembly
between different graphene layers is much weaker than bulk graphite
materials, which indicates a smaller density for GP. The wrinkled na-
nostructures introduce a residual strain in GP, and could influence Cp

significantly [67,68]. The existence of wrinkled nanostructures in GP
could be responsible for the difference of Cp between GP and bulk
graphite materials.

3.4. Heat dissipation inside a smartphone by numerical simulations

The temperature dependent thermal properties of our GP sample are
very attractive for industrial applications such as smartphone and
laptop. In order to determine the performance, three-dimensional
steady numerical simulations are implemented in ANSYS software. The
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Fig. 5. (a) The schematic of TET technique for thermal diffusivity measurement. (b) The linear relationship between normalized resistance and temperature for GP.
(c) Normalized temperature rise during heating process. (d) Thermal reffusivity with respect to temperature.
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cooling film was applied between the plastic shield and the back plate
within the phone. The schematic of internal structure of a typical
smartphone is shown in Fig. 6(a). Thermal properties of different
components used in the simulation are listed in Table 2 [69–72]. The
cooling film is switched to different materials including copper, GP film
with constant thermal properties and a GP film with temperature de-
pendent k. The CPU acts as a heater with a constant operating power of
2.5W. The convective heat transfer coefficient at the phone surface is
5W/m2 K and emissivity is 0.92 for the environment temperature of
25 °C [73]. The heat generated by the CPU dissipates to the surround-
ings to the phone surface. The total number of nodes and elements are

modeled as 2,385,689 and 573,517, respectively. To verify the grid
independence of the simulations, the node number has been varied
between 645,759 and 3,615,264. It is found that the obtained results
exhibits an independent trend when the node number is at above
2,385,689. In all simulations, the governing partial differential equa-
tions per unit volume were solved with an iterative convergence of
10−4.

Fig. 6(c–e) shows the simulation results. It is found that the heat-
dissipation performance of GP film is better than that of copper film as
shown in Fig. 6(c) and (d) in terms of lower temperature values and a
more uniform temperature distribution. When considering the

Fig. 6. (a) The schematic components of a smartphone. (b) A finite element model of a cooling film. Temperature distribution of cooling films in (c) copper, (d) GP
with constant k and (e) GP with temperature dependent k, respectively. (f) Temperature profile along the red line in (b) for different cooling films.
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temperature dependent thermal properties, the maximum temperature
of GP film (in Fig. 6e) is even lower. Temperature profiles along the red
line in Fig. 6(b) for three cases are summarized in Fig. 6(f). The max-
imum temperature drops between GP (with constant properties) and
copper is 1.33 °C (red1 arrow). This value reaches 2.64 °C (blue arrow)
when considering temperature dependent properties. The results de-
monstrate that the temperature dependent thermal property of GP is
very promising for heat dissipation.

4. Conclusions

In summary, we synthesized a large-area GP sample and char-
acterized its thermophysical properties over the range of possible op-
erating temperature. The k of GP at 80 °C is 18.76% larger than that at
room temperature due to the morphological and inner-structure change
during the temperature rise. The surface roughness is decreased by 30%
as determined from AFM imaging, indicating a smoother nanos-
tructures of GP at higher temperatures. The cooling performance of GP
inside a smartphone is simulated, and the results show that the use of
GP (especially considering the temperature dependent properties) is
much better than using a conventional copper film. Our finding in this
work can promote the applications of GP in thermal management.
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Table 2
Material properties used in simulation.

Materials Thickness
(mm)

k (W/mK)

Glass 1.0 1.0
Display Lumped 2.0 kyz= 1.8, kx= 0.1
Plastic – 0.1
Copper 37.3 μm 401
GP with constant k 37.3 μm kyz= 637, kx= 10
GP with temperature

dependent k
37.3 μm kyz is presented as experimental

result of sample 1 in Fig. 3,
kx= 10

Silicone 1.0 2.0
CPU 1.4 150
Air – 0.0263
PCB 0.8 kyz= 45, kx= 1.0
Battery 4.0 kyz= 15, kx= 1.0

1 For interpretation of color in Fig. 6, the reader is referred to the web version
of this article.
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