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Abstract
Machine learning (ML) has gained extensive attention in recent years due to its powerful
data analysis capabilities. It has been successfully applied to many fields and helped the
researchers to achieve several major theoretical and applied breakthroughs. Some of the
notable applications in the field of computational nanotechnology are ML potentials,
property prediction, and material discovery. This review summarizes the state-of-the-art
research progress in these three fields. ML potentials bridge the efficiency versus accuracy
gap between density functional calculations and classical molecular dynamics. For
property predictions, ML provides a robust method that eliminates the need for repetitive
calculations for different simulation setups. Material design and drug discovery assisted by
ML greatly reduce the capital and time investment by orders of magnitude. In this
perspective, several common ML potentials and ML models are first introduced. Using
these state-of-the-art models, developments in property predictions and material discovery
are overviewed. Finally, this paper was concluded with an outlook on future directions of
data-driven research activities in computational nanotechnology.

Keywords: machine learning, material discovery, property prediction, artificial neural
network potential, molecular dynamics

(Some figures may appear in colour only in the online journal)

Introduction

Machine learning has been used in many different fields and has contributed
significantly to the advances of biology [1], medicine [2–5], chemistry [6–13] and
materials science [14–19]. In chemistry, the discovery of new and more efficient
catalysts is restricted by the need for keen scientific intuition and expensive
chemical experiments. A new direction is to help discover and accelerate the
search for catalysts through machine learning algorithms [20–24]. Suzuki et al
[24] used several machine learning methods to predict the multicomponent cata-
lyst performance and explore the catalyst optimization. Twenty promising catalyst
candidates were found based on the optimization. In addition, with the develop-
ment of nanotechnology, new materials are constantly being discovered and
explored [25–37]. These pose the more demanding challenges in predicting
material properties which require higher precision and faster speed. Machine
learning provides a promising solution to satisfy this requirement.

Machine learning has achieved great successes in properties prediction
[38–43] and new materials discovery [44–49]. Traditional property prediction is
based on the experiments and calculations which are time-consuming and capital
intensive. For example, thermal conductivity is an important physical quantity that
can characterize the thermal properties of a material. There are many ways to
measure thermal conductivity, like the hot wire method [50, 51], 3ω method [52]
and laser-flash method [53], etc. Meanwhile, despite new advanced measurement
technologies [54–56] being constantly developed but challenges remain,∗ Authors to whom any correspon-

dence should be addressed.
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especially for low-dimensional materials. Computational methods, such as density
functional theory [57, 58] (DFT), Boltzmann transport equation [59–61] (BTE),
equilibrium and non-equilibrium molecular dynamics [62–64] can be used to
predict the thermal conductivity which can provide more physical insight. How-
ever, DFT calculations are extremely costly and time-consuming applied in large-
scale systems, while molecular dynamics simulations can be employed in large-
scale systems, the accuracy is often poor, so a calculation method that combines
the advantages of both is urgently needed.

Common machine learning methods in properties prediction and materials
discovery include artificial neural networks [65] (ANN), support vector machines
[66] (SVM), decision trees [67], Gaussian process regression [68] (GPR), Baye-
sian optimization [69], etc. Seko et al [70] proposed the descriptors of compound
and used different machine learning methods, including kernel ridge regression,
Gaussian process regression and Bayesian optimization, to predict the physical
properties, including cohesive energy, lattice thermal conductivity and melting
temperature. The prediction accuracy is closed to 1 kcal mol−1 (0.043 eV atom−1)
which represents the success of predictions and descriptors. Raccuglia et al [71]
performed SVM model successfully finding the conditions for the formation of
inorganic-organic hybrid materials. The input data which come from the historical
reactions were trained to acquire the chemical hypotheses and recommended
reactions. While machine learning problems are generally divided into regression
problems and classification problems, the mentioned common methods are sui-
table for both types of problems. In many works, more than one method will be
applied simultaneously to get better results.

The advance in the application of machine learning to theoretical calculations
is machine learning potentials. Interatomic potentials determine the computational
accuracy of molecular dynamics and more accurate interatomic potentials con-
tribute to the broader applications of molecular dynamics. Thus, machine learning
potentials have been extensively investigated recently and achieved some success
[72–75]. There is an increasing number of valuable articles [76–80] reviewing the
application of machine learning potentials. Unke et al [81] systematically
reviewed the development of machine learning potentials and completely
described the physical basis of machine learning potentials. Furthermore, the
training process of the machine learning potentials was also described in specific
detail. A simplified flow chart can be seen in figure 1.

In this review, the latest studies of machine learning in theoretical computing
and practical applications will be overviewed, including machine learning
potentials, prediction of thermal and mechanical properties, and materials dis-
covery. The article is organized as below. In section 2, several commonly used
machine learning methods are firstly described, including ANN, SVM, and GPR.
In section 3, one of the most important progressions of theoretical calculations,
machine learning potentials are reviewed. And in section 4, the applications of
machine learning to thermal and mechanical properties prediction, and materials
discovery will be reported. Finally, the conclusion and challenges of machine
learning applications are given in section 5.

Machine learning approaches

Artificial neural network

The artificial neural network is one of the most important methods in machine
learning. The simple ANN model contains three layers: an input layer, a hidden
layer, and an output layer. Each layer contains a variable number of neurons. The
input of the next layer is obtained by linear summation of the weights, the output
of the previous layer and the bias. Then the output is obtained by the activation
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function. The above process can be expressed as the following equation:
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where xi and xi+1 are the output of this layer and next layer, respectively. wi and b
are the weight and bias parameters, respectively and h is the activation function
which can be sigmoid function, exponential linear unit (ELU), and rectified linear
unit (ReLU). As part of the nonlinear transformation of a neural network, there are
certain requirements for the selection of the activation function. The sigmoid
function can generally be applied to the left-back layer of the network due to its
disadvantage that the gradient of the weights will be close to zero if the input value
is large, which can lead to a state where the parameters are updated very slowly or
even not updated in deep neural networks. In addition, RELU is widely used in the
hidden layer because there is no gradient vanishing problem and the computation
is faster for positive inputs. The backpropagation algorithm is used to update the
weights during the training process. The loss function is used to determine the
final model which means that a smaller loss function represents a better-trained
model. The simple loss function can be expressed as:

Loss y y , 2
i

n

i i
1

2( ˆ ) ( )å= -
=

where yi is the target value and yî is the predicted value.

Convolutional neural networks (CNN) are a major advancement in neural
networks. CNN has gained success and is widely applied in numerous fields, such
as computer vision [82], signal processing [83], agriculture [84], etc due to the
better learning ability and higher classification accuracy in terms of total com-
plexity. It overcomes the shortcoming of fully connected neural networks that the
neglect of the spatial structure and the increasing complexity due to a large amount
of input data. The major difference between convolutional neural networks and
fully connected neural networks is that the features of the image can be extracted
by convolutional and pooling layers. A typical structure of CNN [85] is shown in
figure 2, which consists of the convolutional layer, the pooling layer and the fully
connected layer. In the convolutional layer, the kernel is the key point that
determines the captured features. The purpose of using the pooling layer is to
reduce the number of parameters and thus, further reducing the computational
complexity. CNN is very useful for object recognition. If the neural networks are
well trained and tested, features of images can be recognized automatically, which
is a powerful tool in materials classification [86, 87] and identification in different
phases [88].

Support vector machines

In general, support vector machines [89] are used in classification and regression
problems. Support vector machines are still essentially an optimization problem,
i.e. how to optimally partition a data set with the hyperplanes. For example,

Figure 1. The complete training process of machine learning. Reprinted with permission from [81].
Copyright (2021) American Chemical Society.
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suppose there is a data set (xi, yi), the basic equations of SVM are as follow:

f x w b, 3( ) ( ) ( )j x= +
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where j(ξ) is the high-dimensional space feature. f (x) is the model of hyperplanes
that partition the data set and w and b are the weight parameters. R is the objective
function, and the optimal partitioning hyperplane can be found by finding its
minimum value. However, some samples always cannot be perfectly partitioned,
which requires the model to be tolerant of some mistakes that do not satisfy the

constraint. The termC
n

L x y
1

,
i

n
i i1

( )å =
is introduced to measure this error. C is the

error penalty factor and a constant, which is used to reconcile the difference
between the regularization term and the empirical error. L represents the loss
function. For the optimization problem, in addition to the above objective func-
tion, the constraint function needs to come down

y w b ,i i i i( )j x e z- - +

*w b y , 5i i i i( ) ( )j x e z+ - +

*, 0,i iz z 

where i
⁎z and i

⁎z are the slack variables. The above equation can be solved by
Lagrange multiplication to obtain its pairing problem.
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K is the kernel function that has four types, including linear, sigmoid, polynomial
and radial basis functions.

Gaussian process regression

Gaussian process regression is another important machine learning approach for
making predictions about materials properties. For a set of input {(xi, yi) | i = 1, 2,
K, N}, the Gaussian process can be written as:

f GP m k, , 7( ) ( )~

where m is the mean function and k is the covariance function. GP stands for the
Gaussian process and represents the joint Gaussian distribution. The mean func-
tion and the covariance function are expressed as:

m x E f x , 8( ) [ ( )] ( )=

k x x E f x m x f x m x, , 9( ) [( ( ) ( ))( ( ) ( ))] ( )¢ = - ¢ - ¢

where E represents the mathematical expectation. This means that if the mean
function and covariance function are specified, the Gaussian process is also

Figure 2. The architecture of CNN which used in properties prediction. It concludes two
convolutional layers, two pooling layers and a fully connected layer. Reprinted from [85],© 2020
Elsevier B.V. All rights reserved.
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determined. There are many different covariance functions, like squared expo-
nential, matern multiplying 5/2, exponential, and rational quadratic, etc. A
common example of mean function and covariance function is as follow:

m x ax b, 10( ) ( )= +

11k x x f x f x
x x

l
, cov , exp

2
,f

2
2

2⎜ ⎟
⎛
⎝

⎞
⎠

  ( )( ) ( ( ) ( )) s¢ = ¢ = -
- ¢

where σf
2 and l are the hyperparameters of the kernel function. In fact, in GPR, the

function f (x) is not accessible in most applications. Thus, f (x) is denoted as:

y f x , 12i i i( ) ( )e= +

where ε is an i.i.d. noise variable that obeys N(0,σ 2) where σ 2is the variance.

Theoretical applications of machine learning

Machine learning potential is one of the major breakthroughs in the application of
machine learning to computing. Interatomic forces between atoms in molecular
dynamics are typically described with empirical interatomic potentials (EIPs). A
large number of different forms of EIPs functions, like Tersoff [90–92], REBO
[93], EAM [94], reactive force field [95–97] (ReaxFF), etc, have been developed
and applied to different systems by molecular dynamics simulations with some
success. Whereas this accuracy is limited due to the pre-defined mathematic
formulation. In addition, although the parameters of EIPs can be optimized [98],
the optimization problem remains a challenge [99], especially for the complex
EIPs, like ReaxFF [100].

Machine learning provides a new way to acquire the relationships between
atomic configurations and energy. Several machine learning potentials have been
proposed in recent years based on the different machine learning models and
descriptors, such as neural networks potentials [101, 102] (NNP), Gaussian
approximation potentials [103] (GAP) and moment tensor potential [104] (MTP).
In addition, machine learning potential packages, like Deep-MD [105] and QUIP
[106], have been developed and integrated into common molecular dynamics
simulation software, such as LAMMPS [107], etc. In this section, three common
machine learning potentials are introduced, including NNP, GAP and MTP.

Neural networks potentials

The original study of NNP came from the work of Behler et al [102]. As shown in
figure 3, the coordinates of each atom are used as inputs. Then, those inputs are
converted into a serial of symmetry function values. Afterward, the neural network
is used to obtain the predicted energy values. It is worth noting that the total
energy of the system is the sum of energies of each atom. The energy of each atom
is determined by its chemical environment which is described by physical
descriptors. In this work, the descriptors are called symmetry functions. The

Figure 3. The initial simple structure of the neural network to acquire the NNP. Only three atoms are
considered. Reprinted figure with permission from [102], Copyright (2007) by the American
Physical Society.
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symmetry function consists of two parts, the radial term and the angular term,
denoted as:

G e f R , 13R R
cut ij

1 ij s
2 ( ) ( )( )å= h- -

G

e f R f R f R

2 1 cos

,
14

ijk

R R R
c ij c ik c jk

2 1

ij ik jk
2 2 2

( )

( ) ( ) ( )
( )

‐

( )

å l q= +

´

V V

h- + +

where G1 and G2 are the radial term and angular term, respectively. Rs, η and ζ are
the parameters that are selected by experience. Different values of Rs, η and ζ have
been used resulting in a few thousand fitting parameters for the NN. Rij is the
distance between atom i and j. θijk is the angle of atom i, j and k, and the center is
the atom i. f is the cutoff function which can be expressed as:

f R
R R R R

R R

0.5 cos 1

0
. 15c ij

ij c ij c

ij c

⎧
⎨⎩

( )
[ ( ) ]

( )
/p

=
+

>


This equation implies that if the atom distance exceeds the cutoff distance, there is
no interaction between two atoms. And it ensures that the energy varies smoothly
with distance.

Although the development of this potential function is best applied to the
single-element system, this work is very enlightening. And next, different ANNs
were developed and one common example is deep potential molecular dynamics
[101, 105] (DPMD). DPMD is the scheme for molecular dynamics simulations
that used neural network potentials. It is also an NNP but its breakthrough lies in
overcoming the limitations of symmetry functions. The calculated four quantities
1/Rij, xij/Rij, yij/Rij and zij/Rij are only the input of the deep neural networks. A
specific image example can be seen in figure 4. And next, the input quantities are
transformed into descriptors by embedding net. Another difference is that DPMD
is based on the deep neural network which contains multiple hidden layers. The
proposed DPMD is proven to be effective and feasible in multiple systems
[108–111].

Fan et al [112] proposed a novel neural network potential that incorporates an
evolutionary strategy, called the neuroevolutionary potential (NEP). A new
descriptor was developed which was inspired by the symmetry functions and the
smooth overlap of atomic positions (SOAP). As an example of single-component

Figure 4. To illustrate this with the example of a water molecule, the input to the neural network
represents the environment of atom i. Reprinted figure with permission from [101], Copyright (2018)
by the American Physical Society.
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systems, the radial term and angular term are expressed as:

q g r , 16n n ij( ) ( )å=

q g r g r P cos . 17nl n ij n ik l ijk( ) ( ) ( ) ( )åå q=

A detailed description of these two functions can be found in the article by Fan
et al [112]. Importantly, this potential was integrated into the molecular dynamics
software that uses GPU calculations which are called GPU-MD [113, 114] and
this potential is reported to be faster than some other machine learning potentials,
such as GAP and DP.

Gaussian approximation potentials

Some of the physical assumptions of Gaussian approximation potentials are the
same as for the neural network potentials. The system energy can be described as
the sum of the energies of each atom and the energy of the atom is determined by
its surroundings. In GAP, the atomic energy is the sum of a series of kernel
functions associated with the descriptor:

E q K q q, , 18i
t

N

t i t
1

t

( ) ( ) ( )å a=
=

where E, K, and q are the atomic energy, the kernel function, and the descriptor,
respectively. For the two-body descriptors, q is described as:

q r r . 19i j
2 ∣ ∣ ( )= -

For the three-body term, the equation is

q

r r

r r
r

. 20
ij ik

ij ik
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3 2
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The many-body term is usually represented by SOAP. The SOAP kernel can be
written as:

K dR r Rr dr, , 21( ) ( ) ( ) ( )ò ò r r r r¢ =

where ρ is the Gaussian function represented the local density [115].

r
x r

exp
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. 22i
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-

The detailed description of SOAP can be found in De et al [115] and a two-
dimensional diagram of local density function is illustrated in figure 5. An
example of the use of GAP was shown in the work of Rowe et al [116]. Gaussian
approximation potential for graphene was trained with computational data from
the density functional theory (DFT). Also, to access the accuracy of the machine
learning potentials, phonon dispersion curves and phonon spectra at finite

Figure 5. The illustration of the atomic neighborhood density function. [106] John Wiley & Sons. ©
2015 Wiley Periodicals, Inc.
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temperature were calculated and compare to the results from DFTB and the
empirical interaction potentials, including REBO, AIREBO, AIREBO-Morse,
Tersoff and ReaxFF. The phonon spectrum calculated by GAP are consistent with
the experimental results and the sub-meV accuracy can reach.

Moment tensor potential

As with the two machine learning potentials above, the total energy in moment
tensor potential can be attributed to the contribution of each atom, while also using
the concepts of neighboring atoms and cutoff. The atomic contribution is denoted
as:

V r B r , 23i j j i( ) ( ) ( )åq=

where B is the basis function and θ is the parameter that needs to be calculated by
fitting to the training set. Energy, force, and stress tensor are used to determine the
final MTP. The parameters in MTP are optimized by a minimization function.

C E x C f x C x ,

24

E i f j i s i
2 2 2 2 2 2⎡⎣ ⎤⎦( ) ( ) ( )

( )
å å sD + D + D

where ΔE, Δf and Δσ are the errors of energy, force and stress, respectively,
which is the difference between the prediction value and the target value. And CE,
Cf and Cs are the weighting parameters. A detailed description of MTP can be seen
in the work of Shapeev et al [104]. Discrepancy representations of the atomic
environment can be also found in this work which is based on the invariant
polynomials.

Applications of AI in engineering

Thermal property

Thermal transportation has gained increasing attention due to its important role in
high-power density electronic devices [117–119], thermal materials [120–123],
thermoelectric materials [124, 125] and aerospace [126, 127]. In particular, in
micro and nanoscale areas, some peculiar phenomena different from the traditional
understanding were discovered, like size effects [128, 129] and thermal rectifi-
cation [130, 131]. In addition, one-dimensional and two-dimensional materials,
such as carbon nanotube [132–134] and graphene [135–140], provide additional
opportunities to investigate the theoretical microphysical phenomena. Thermal
conductivity and thermal resistance are the common but essential materials
properties. As mentioned above, experimental measurements and theoretical cal-
culations of the thermal properties of materials have been important efforts.
Machine learning provides a new way to make a reasonable prediction of thermal
conductivity and thermal resistance. There are two ways to predict the thermal
properties of materials, one based on the machine learning models and the other on
molecular dynamics driven by machine learning potentials. In the following part
of this section, the works on thermal properties prediction based on the above two
methods are reported.

The machine learning models used in thermal properties prediction are not
uniform. Several machine learning models are used, such as fully connected neural
networks, CNN, SVM, GPR, etc. Han et al [141] utilized a genetic algorithm-
driven approach and machine learning methods to investigate the effect of porous
structure on the thermal conductivity of materials. The conventional view of
physics holds that periodically distributed porous structure has a higher thermal
conductivity compared to disordered porous structure [142–144]. This view is
challenged in this work. By using the genetic algorithm-driven approach, the
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unexpected enhanced thermal conductivity in disordered nanoporous graphene is
discovered. To further investigate this unexpected finding, a series of descriptors
affecting the thermal conductivity of nanoporous materials were proposed,
including shape factor, bottleneck, channel factor, perpendicular nonuniformity,
and dominant paths. Regression analysis revealed the correlation between these
descriptors and the thermal conductivity of nanoporous materials (see figure 6). It
is found that more pore arrangement in the x-direction improves thermal con-
ductivity, while more pore arrangement in the y-direction leads to a decrease in
thermal conductivity. In addition, machine learning approaches were also used to
predict the thermal conductivity of nanoporous graphene, and the predictions were
reasonable and accurate [145]. Machine learning methods have been shown to not
only make predictions about thermal conductivity but also to help find new
physical insights. Chen et al [146] used GPR to predict the thermal conductivity of
inorganic materials and the data for the training set is derived from the experi-
ments. They summarized 29 features to investigate the relevance of thermal
conductivity, including bulk modulus, density, mean average bond length, etc.
Next, by using the summarized features and machine learning model, 95 sets of
data are utilized to train the model and make credible predictions of 5 inorganic
solids in the hold-out set. Also, a comparison of this training model and other
semi-empirical models is taken. The ML model presented in this work is cheaper
and more flexible contributing to the easily and fast accessible chemical and
structural features. The prediction of thermal resistance is a challenging task
because of the variety of factors that determine the interface thermal resistance.
Wu et al [147] employed three different machine learning models, including
regression tree ensembles of LSBoost, SVM, and GPR, to predict the interfacial
thermal resistance, with the data from experiments. The predicted results were
illustrated in figure 7(b) and the differences in the predictions of the three models
can be seen in figure 7(a). The effects of descriptors were also considered. These
descriptors were categorized into three types, including property descriptors,
compound descriptors, and process descriptors (see in figure 7(c)). As the number
and type of descriptors provided increase, this means that more information is
considered, and the accuracy of the prediction model increases. In addition, it also
means that the influence of descriptors in thermal resistance cannot be considered
in isolation.

Machine learning potential-driven molecular dynamics is another approach to
predict the thermal properties which provide additional physical insights. Liu et al
[148] developed the MTP for Wurtzite Boron Arsenide to investigate the influence
of four-phonon scattering in thermal conductivity. Boltzmann transport equation is
a common method to calculate the lattice thermal conductivity, but the require-
ment of the higher-order interatomic force constants (IFC) is the challenge. The
computational speed and efficiency of high order IFC calculation with density
functional theory and machine learning potentials were directly compared. It was
found that the computational effort to obtain higher-order IFC using MTP was
greatly reduced. Meanwhile, the thermal conductivity of Wurtzite Boron Arsenide
is 1036 W m−1 K−1 which decreased by 43% considering the four-phonon
scattering (see figure 8). Hiphive package [149] provides another effective method
to extract high-order IFC from a limited amount of data set. In this package, the
symmetry of crystal was considered to reduce the number of degrees and machine
learning methods was used to extract arbitrary order IFC based on the data set
acquired from DFT. In addition, the absence of a reliable force field is one of the
biggest obstacles in molecular dynamic simulations. Machine learning potentials
remove this barrier. Liu et al [150] developed the GAP for β-Ga2O3 to study the
thermal properties overcoming the limitation of the lack of force field for β-Ga2O3.
By using ab initio molecular dynamics and static calculations, 800 sets of data,
including configurations, total energies, forces, and virial stresses were obtained
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and used to train the GAP. This trained GAP can reach high accuracy,
0.0003 eV atom−1 for energy accuracy, 0.050 eV Å and 0.038 eV Å−1 for
different atomic force accuracy. Subsequently, the large-scale atomic system
simulations were performed to verify the capacity of this trained GAP in pre-
dicting the lattice dynamics, the thermal conductivity of β-Ga2O3 and the inter-
layer interactions between β-Ga2O3 and substrate. Li et al [151] also predicted the
thermal conductivity of β-Ga2O3 but the interatomic interaction potential was deep
NNP. The predicted values were consistent with the calculated value from the first
principles. In addition, the anisotropic thermal conductivity of β-Ga2O3 was
found, 10.68 W m−1 K−1 in the [110] direction, 20.78 W m−1 K−1 in the [010]
direction, and 12.61 W m−1 K−1 in the [001] direction. These all support the great
potential of machine learning potential in predicting the thermal properties of
materials.

Mechanical property

Mechanical properties are another common but important physical property.
Materials applied in devices inevitably confront the deformation [152, 153], shear,
etc. Therefore, measuring and calculating the mechanical properties is one of the
essential parts of the studies of material properties. Like thermal properties,

Figure 6. The correlation between effective thermal conductivity and five different physical
descriptors (a) shape factor, (b) bottleneck, (c) channel factor, (d) perpendicular nonuniformity, (e)
dominant path. Reprinted from [145], © 2020 Elsevier Ltd. All rights reserved.
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Figure 7. (a) Interface thermal resistance of different systems were predicted by three machine
learning models, including SVM, GPR and LSBoost. The color region represents the interface
thermal resistance were predicted repeatedly by at least two models. (b) The list of descriptors.
Reproduced from [147]. CC BY 4.0.

Figure 8. (a) Phonon spectrum of c-Bas with direct calculations and MTP. (b) Thermal conductivity
with Three-phonon and four-phonon scattering considerations. (c)–(d) Comparison of three-phonon
and four-phonon scattering pairs for scattering rate variation with frequency. Reprinted with
permission from [148]. Copyright (2021) American Chemical Society.
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mechanical properties study can be divided into two parts, including experimental
measuring and theoretical calculations. In recent years, machine learning methods
are also expanded to the field of mechanical properties prediction. Zeolites are
widely used for adsorption [154, 155], separation [156, 157], and gas storage
[158, 159] due to their nanoporous structures. However, the unique and rich
structures also give rise to variations in properties. Mechanical properties are one
of the key factors to determine the viable zeolite’s structure. And this structure
diversity makes the determination more challenging and expensive. A simpler and
cheaper properties prediction method is needed. By using gradient boosting
regressor, Evans et al [160] predicted the moduli for 590448 hypothetical zeolites.
The trained data, including bulk and shear moduli, were derived from exact DFT
calculations. This is an unacceptably expensive undertaking if traditional mea-
surement and calculation methods are used. But using machine learning methods,
it is cheaper and less time-consuming. In this study, about 32 descriptors were
acquired from the geometric information (see figure 9), such as internal surface
area, pore-volume, features of the distribution of bond lengths and angles, etc.
Excellent accuracy was achieved with a root mean square error of 0.102 and
0.0847. For other materials, such as silica with various crystal structures and
glassy states, graphene, etc, machine learning methods have also shown excellent
mechanical property prediction capabilities. Deng et al [161] explored the rela-
tionship between mechanical properties and complex structural properties of silica
by using machine learning methods and enhanced sample methods. The
descriptors of various types of silica were acquired from DNN (see in figure 10(a))
and the results showed that the DNN method provided the precise prediction of
mechanical properties of silicon dioxide (see in figure 10(b)). Zhang et al [162]
employed several different machine learning models, like stochastic gradient
descent, k-nearest neighbors, support vector machine, decision tree, and artificial
neural networks, to investigate the mechanical properties of graphene. And it was
found that stochastic gradient descent method was not suitable for the predictions
of mechanical properties in this study. The training data sets were derived from the
molecular dynamics calculations and the influence factors, temperature, strain rate,
vacancy defect, and chirality, were considered. Integrating the effects of multiple
factors is difficult using traditional methods, but it is achievable for machine
learning methods.

Moreover, by using the machine learning potentials, computational accuracy
of mechanical properties of materials can reach near the level of DFT while
allowing for large-scale calculations. Mortazavi et al [163] investigated the
mechanical properties of graphene/borophene heterostructures by employing
MTP. For empirical interatomic potential, the calculations of mechanical prop-
erties of graphene/borophene heterostructures are inaccurate and unstable.
However, by using the machine learning potential, the calculated ultimate tensile
strengths of the graphene/borane heterostructure agree well with the DFT

Figure 9. A classification of descriptors which used in mechanical properties prediction of zeolite
frameworks. Reprinted with permission from [160]. Copyright (2017) American Chemical Society.
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calculations. Although there are still discrepancies for some structures, this is a
great improvement over the empirical potential. Moreover, multi-scale modeling is
also possible through the utilization of machine learning potentials (see figure 11).
Graphene/borane heterostructure models with sizes ranging from 63 nm to 63 μm
were constructed, and the deformation process was observed. These highlight the
capacity of machine learning potentials in multi-scale calculations and the pre-
dictions of complex system properties.

Computational material discovery

Materials play a fundamental role in modern society. The search and discovery of
desired materials through assisted machine learning methods [164–167] were
widely studied and used in recent years. Thermoelectric materials have been
extensively studied due to their unique properties to directly convert waste heat
and thermal energy into electrical energy [168–171]. The conversion efficiency of
thermoelectric materials depends on the thermoelectric figure of merit ZT, which is
defined as:

ZT
T

k k
, 25

L e

2

( )
( )a

r
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+

where α is the Seebeck coefficient, T is the temperature and ρ is the electrical
resistivity. kL and ke represent the lattice thermal conductivity and charge-carrier
thermal conductivity, respectively. The improvement of thermoelectric efficiency
is a daunting challenge because it is determined by numerous factors and

Figure 10. (a) Vivid illustrated of the descriptors which used in the mechanical properties prediction
by machine learning methods. (b) The prediction model and error of bulk modulus, shear modulus
and tensile strength. [161] John Wiley & Sons.© 2021 The American Ceramic Society.

13

Nanotechnology 33 (2022) 162501 Perspective



meanwhile, there are complex interrelationships between the factors. For example,
electrons and phonons together determine the thermoelectric properties of the
material. In addition to some properties that determine electrons and phonons
separately, there are interactions between electrons and phonons. These electron-
phonon interactions influence the thermal conductivity and Seebeck coeffi-
cient [172].

In the past research on thermoelectric materials, theoretical calculations,
especially DFT calculations, have made a great contribution [170, 173]. Ther-
moelectric material discovery aided by machine learning algorithms has become
popular, recently. Hou et al [174] utilized the GPR model to find the optimized
power factor of Al2Fe3Si3 intermetallic compound (see figure 12). This inter-
metallic compound has been reported to have a high-power factor in the middle-
temperature range. Al23.5+xFe36.5Si40−x can reach the higher power factor by
optimizing the ratio x. The training data sets, including temperature, compound,
and power factor, were acquired from experiment measurement. Next, the rela-
tionships of temperature, compound and power factor were obtained by the GPR
model and according to this model, power factor with different temperature and
compound was predicted for finding the optimized power factor. The final opti-
mized ratio x was found to be 0.9. It is worth noting that the cost and time to
discover the optimal ratio by using a machine learning model is minimal compared
to the experiment. Iwasaki et al [175] employed a serial of machine learning
methods, including decision tree regression, elastic net, quadratic polynomial
LASSO, and neural network to investigate the key parameters controlling the spin-
driven thermoelectric effect. The model schematic is shown in figure 13(a). Next,

Figure 11. Multi-scale modeling calculations of graphene/borophene heterostructures. Reproduced
from [163]. CC BY 4.0.

Figure 12. The process and result of using machine learning approach to find the optimized Al/Si
ratio. Reprinted with permission from [174]. Copyright (2019) American Chemical Society.
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these trained models helped to develop new spin-driven thermoelectric effect
materials. In this study, Fe-Pt-Sm alloy has been selected and optimized which
demonstrated the feasibility of this model.

However, the ‘global optima’ for thermoelectric materials discovery remains
an intractable problem. Most of the works are limited only to locally optimal
solutions even using machine learning methods. Gaultois et al [176] offered a
different insight. A machine learning-based engine for materials recommendation
was developed to provide the potentially viable material selection options rather
than the quantitative predictions of properties.

Conclusion and future challenges

This review focuses on the theoretical and practical applications of ML in com-
putational nanotechnology, including machine learning potentials, thermal prop-
erties, and mechanical properties prediction and materials discovery. The most
common machine learning methods are first presented, followed by a systematic
report of significant advances in machine learning potentials, such as NNP, GAP
and MTP. In addition, those machine learning potentials have been integrated into
the software, like GPUMD, QUIP, etc. The application of machine learning in
thermal and mechanical properties prediction was highlighted in two parts,
including the utilization of machine learning models and molecular dynamics
simulations driven by machine learning potentials. Machine learning models make
the reasonable prediction of material properties and machine learning potential
combines the advantages of DFT and empirical potential in a computationally
promising way.

However, there are remaining challenges with the application of machine
learning. (1) The number of reliable training sets is often insufficient to meet the
number of training sets required for machine learning training. It is a great chal-
lenge to train the model with a small training set to obtain predictions with

Figure 13. (a) A schematic diagram of decision tree regression while Δα and SR have positive
correlation and nR has a negative correlation with spin-driven thermoelectric effect. (b)–(c)
Regression coefficients for the elastic net and quadratic polynomial LASSO. (d) A schematic
diagram of neural network. (e) Comparison graph of predicted and experimental results. Reproduced
from [175]. CC BY 4.0.
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acceptable accuracy. Moreover, the data from successful experiments are far more
than failed experimental data and these data also have some value and significance
[71]. (2) Descriptors are crucial for the properties prediction using machine
learning methods. Although as mentioned above, more information consideration
will improve the performance of machine learning models, the increasing number
of descriptors increases the complexity of the calculation. For high-dimensional
problems, there is a need to develop more efficient and concise descriptors. (3) For
machine learning potentials, the problems of data sets and descriptors are also
possessed, especially for materials with complex chemical compositions. The need
for a large amount of data sets and increasing descriptors lead to the fact that the
training of machine learning potentials is extremely difficult, complex, time-
consuming, and costly.
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